Digital geometric methods in document image analysis

نویسندگان

  • Ari D. Gross
  • Longin Jan Latecki
چکیده

One of the main tasks of digital image analysis is to recognize the properties of real objects based on their digital images. These images are obtained by some sampling device, like a CCD camera, and are represented as finite sets of points that are assigned some value in a gray level or color scale. A fundamental question in image understanding is which features in the digital image correspond, under a given set of conditions, to certain properties of the underlying objects. In many practical applications this question is answered empirically by visually inspecting the digital images. In this paper, we present a mathematically comprehensive answer to this question with respect to topological properties. In particular, we derive conditions relating properties of real objects to the grid size of the sampling device which guarantee that a real object and its digital image are topologically equivalent. These conditions also imply that two digital images of a given object are topologically equivalent. Moreover, we prove that a topologically invariant digitization must result in well-composed or strongly connected sets and that only certain local neighborhoods are realizable for such a digitization. Using the derived topological model of a well-composed digital image, we demonstrate the effectiveness of this model with respect to the digitization, thresholding, correction, and compression of digital document images. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Dewarping Based on Text Line Detection and Surface Modeling (RESEARCH NOTE)

Document images produced by scanner or digital camera, usually suffer from geometric and photometric distortions. Both of them deteriorate the performance of OCR systems. In this paper, we present a novel method to compensate for undesirable geometric distortions aiming to improve OCR results. Our methodology is based on finding text lines by dynamic local connectivity map and then applying a l...

متن کامل

رفع اعوجاج هندسی متون به‌کمک اطلاعات هندسی خطوط متن

Document images produced by scanners or digital cameras usually have photometric and geometric distortions. If either of these effects distorts document, recognition of words from such a document image using OCR is subject to errors. In this paper we propose a novel approach to significantly remove geometric distortion from document images. In this method first we extract document lines from do...

متن کامل

An Image Analysis-Based Methodology for Chromite Exploration through Opto-Geometric Parameters; a Case Study in Faryab Area, SE of Iran

Traditional methods of chromite exploration are mostly based on geophysical techniques and drilling operations. They are expensive and time-consuming. Furthermore, they suffer from several shortcomings such as lack of sufficient geophysical density contrast. In order to overcome these drawbacks, the current research work is carried out to introduce a novel, automatic and opto-geometric image an...

متن کامل

Digital Geometric Methods in Image Analysis and Compression

Abs t rac t . One of the important problems related to image analysis and compression is finding repeated structure. Although the focus of this paper is developing digital geometric models and methods for finding regular structure in digital document images, the applicability of the digital geometric approach is also demonstrated on images taken under orthographic and perspective projection. Fi...

متن کامل

Photometric and Geometric Restoration of Document Images Using Inpainting and Shape-from-Shading

The popularity of current hand-held digital imaging devices such as camera phones, PDAs, camcorders has promoted the use of digital cameras to capture document images for daily information recording purpose. However, the captured images often contain photometric and geometric distortions when the documents are of non-planar shapes, which cause significant problems to various document image anal...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 32  شماره 

صفحات  -

تاریخ انتشار 1999